Linking Chemical Electron–Proton Transfer to Proton Pumping in Cytochrome c Oxidase: Broken-Symmetry DFT Exploration of Intermediates along the Catalytic Reaction Pathway of the Iron–Copper Dinuclear Complex
نویسندگان
چکیده
After a summary of the problem of coupling electron and proton transfer to proton pumping in cytochrome c oxidase, we present the results of our earlier and recent density functional theory calculations for the dinuclear Fe-a3-CuB reaction center in this enzyme. A specific catalytic reaction wheel diagram is constructed from the calculations, based on the structures and relative energies of the intermediate states of the reaction cycle. A larger family of tautomers/protonation states is generated compared to our earlier work, and a new lowest-energy pathway is proposed. The entire reaction cycle is calculated for the new smaller model (about 185-190 atoms), and two selected arcs of the wheel are chosen for calculations using a larger model (about 205 atoms). We compare the structural and redox energetics and protonation calculations with available experimental data. The reaction cycle map that we have built is positioned for further improvement and testing against experiment.
منابع مشابه
Proton-coupled electron transfer and the role of water molecules in proton pumping by cytochrome c oxidase.
Molecular oxygen acts as the terminal electron sink in the respiratory chains of aerobic organisms. Cytochrome c oxidase in the inner membrane of mitochondria and the plasma membrane of bacteria catalyzes the reduction of oxygen to water, and couples the free energy of the reaction to proton pumping across the membrane. The proton-pumping activity contributes to the proton electrochemical gradi...
متن کاملCoupled proton and electron transfer reactions in cytochrome oxidase.
Cytochrome oxidase catalyzes the four-electron reduction of O2 to water and conserves the substantial free energy of the reaction in the form of a protonmotive force. For each electron, two full charges are translocated across the membrane, resulting in a voltage. One of the mechanisms to generate the charge separation in cytochrome oxidase is via a proton pump. A single reaction cycle can be m...
متن کاملCytochrome c oxidase: catalytic cycle and mechanisms of proton pumping--a discussion.
Cytochrome c oxidase catalyzes the reduction of molecular oxygen to water, a process in which four electrons, four protons, and one molecule of oxygen are consumed. The reaction is coupled to the pumping of four additional protons across the membrane. According to the currently accepted concept, the pumping of all four protons occurs after the binding of oxygen to the reduced enzyme and is excl...
متن کاملStructural Changes and Proton Transfer in Cytochrome c Oxidase
In cytochrome c oxidase electron transfer from cytochrome c to O2 is linked to transmembrane proton pumping, which contributes to maintaining a proton electrochemical gradient across the membrane. The mechanism by which cytochrome c oxidase couples the exergonic electron transfer to the endergonic proton translocation is not known, but it presumably involves local structural changes that contro...
متن کاملSteps of the coupled charge translocation in the catalytic cycle of cytochrome c oxidase.
Cytochrome c oxidase (COX) terminates the respiratory chain in mitochondria and in plasmatic membrane of many aerobic bacteria. The enzyme reduces dioxygen molecule into water and the reaction is accompanied with generation of transmembrane difference of electric potentials. The energy conservation by COX is based on the vectorial organization of the chemical reaction due to substrate protons t...
متن کامل